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ABSTRACT 

We present the Vector Equivalence technique. This technique allows a sim- 

ple and systematic calculating of Feynman diagrams involving massive fermions at 

the matrix element level. As its name suggests, the technique allows two Lorentz 

four-vectors to serve as an equivalent of two externai fermions. In further calcula- 

tions, traces involving these vectors replace the matrix element with the external 

fermions. The technique can he conveniently used for hot11 symbolic and wmeric 

calculations. 
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1. Introduction 

Calculations of Feymnan diagrams with external fermions occur frequently in 

particle phenomenology. Tl1e traditional calculation technique calls for squaring 

the amplitude while summi11g over polarizations. This method has the advantage 

that the final expression involves only dot-products of Lorentz vectors and, possibly, 

contraction with the Levi-Civita tensor. A major disadvantage of this method is 

that the number of terms in the result. grows as the square of the number of terms 

in the amplitude. Both iu t,ree-level and in higher order calculations this can be a 

severe shortcoming. 

Several authors have proposed methods for calculating t,he rnatris element 

without squaring [l, 21. We p1-opose yet another such method. Its main advantage 

is that it gives, much like t,lrc traditional method, a relatively simple symbolic 

expression of M even wl1eu massive fermions a,re involved. Unlike other methods, 

one can perform calculations wit11 free Lorentz indices. .4 similar tecl1nique has 

been implemented using the symbolic language Form.3 

Generally speaking, the method entails substituting for each pair of external 

fermions, two complex Lorentz vectors, corresponding to t,he vect,or and pseudo- 

vector currents, .4ny amplitude i11volving the t,wo fermions can the11 bc rewritten as 

a trace involving the various four-vectors (and free Lorentz indices) in the problem 

and these two new four-vectors. 

The Vector EquivAcnce technique was first described, and used ext,ensively, in 

ref. 6. The technique can easily be combined wit11 computerized packages for sym- 

bolic manipulation of the Dirac algebra [-I, 51. The Vector Equivalence technique 

is already implemented in the package described in ref. 4, a,nd can e<asily be added 

to other packages. 



This paper proceeds as follows. In the next section we derive the Vector Equiv- 

alence technique. We describe how to use the two currents to rewrite arbitrary am- 

plitudes and quote some useful identities. In sec. 3 we give an example for the use 

of the Vector Equivalence technique. !Ve use it to calculate the helicity amplitude 

for the process e+e- + Ili+lY- in a model which includes excited neutrinos [7]. 

The excited neutrinos couple to the electrons via a magnetic dipole transition. 

The methods described in refs. 1-2 cannot be simply used to derive this result, In 

sec. 4 we present our conclusions. In order to calculate the actua,l vector currents, 

one has to resort to an explicit represemation of t,he spiuors. In the appendix we 

describe, for completeness, one such rcpresenta,tion, closely following ref. 1. 

2. The Vector Equivalence Technique 

In calculating a Feynmau diagram with cxtcrnal fcrmions. one cucountcrs ob- 

jects of the form 

M = ti(p, s)Ih(p’, s’), (2.1) 

where p and p’ are the momenta of the external fermions, s and s’ are their helicities, 

and r is an arbitrary string of Dirac gamma matrices. For simplicity, we are only 

referring to fermions (as opposed t,o anti-fernlions) in t,his derivation. For the 

purpose of this discussion, an anti-fermion with mass m behaves exactly like a 

fermion with mass --m. ;\dditionally, we suppress the reference to s and S’ in t,he 

derivation. 

The traditional method calls for squaring M while summing over fermiou he- 
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licities: 

c IMI’ = c tr {$p, s)Jh(p’, s’)qp’, s’)i%(p, s)} = tr { ($+ m)r(p + nz’)F} , 

(2.2) 

where r”I= = lYR*yo and m and m’ are t,he masses of 11 and 11’ respectively. This 

method is advantageous in that the final result is expressed in terms of easy-to- 

calculate Lorentz invariants. However, it becomes cumbersome as the number of 

terms in M increases. 

We start by rewriting 

M = gp)rh(p’) = tr { r~u(p’),qp)} 

Next, express ill) in terms of an orthogonal basis {r (i) } of the four dimen- 

sional Dirac space. This basis obeys the orthonormality relation 

tr r(ilr(j)’ { }=gj, 

In terms of such a basis, oue can write 

u(p’)qp) = c VW’) 

(9 

The coefficients V(‘) can be calculated using a project,ion: 

V(‘) = tr { ,~(p’),k(p)f’(‘)~) = ~ti(p)r(i)RU(p’) 

Given V(“). M may be written a.7 

M = ii(pp(p’) = C v% (rr+)} 
(i) 

(2.3) 

This equation can be simplified if we consider the fact that p a,nd 11’ represent 
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on-shell fermions obeying the Dirac equation [8]: 

Gi(P)($ - m) = (# - m’)u(p’) = 0. 

For any rci) we can write 

0 = ii(p)(jd - 77z)r(i)R I = C l/(j)tr (d - I,l)r(j)Rr(j) , t (i) > 

0 = qp)r(i)R($ - d)&) = C v% ( FR(# - d)r(j)) , 
(j) 

mLAi) = C v(j)tr { fl(j)Rr(jl} , 
(j) 

,‘J,/(“) = g v(i)tr ($9’ #r(i)} 

Let us now consider a particular choice for the basis {Pi)), namely 

(2.5) 

{ r(i) 1 = 1 --- 1 yP yJ -(Sy’L -- y5 2’2’2fi> 2 ‘2 I 1 

where ypv = (ypy” - yyyp)/2. The corresponding V(“) are 
( > 

(v(i)} = { u, VP’, WV, vs”, u5) 

Equation (2.4) t,hen takes the form 

wr424 = + r(u+ y + $w,,,-f~ + y5 y5 + usy5) (2.6) 

The string r of equation (2.1) can always be written a~ a sum r = rodd + revel, 

where r&, and revel, contain an even and an odd number of gmnma matrices 
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respectively. Equation (2.6) can be broken into 

w&dd+‘) = & {rodd(Y/ + Y5 y/5)}, (2.7) 

1 ii(p)r,v,,u(p’) = Ttr r,,,,(u + (is-f5 + ~w,,y-y ti (2.8) 

If both fermions are massless, the string r of equation (2.1) has to contain an 

odd number of gamma matrices, and we therefore have CT = C’s = TV’L” = 0. Let 

us assume then that m # 0. Substituting I(‘) = -,“y/2< 2 mto equation (2.5) gives 

W’Y = &tr { $*++( J! + -,s yi5)} = $--(pvl~T~’ - flVy + iellvP~), 
nz 

= ltr {-,V’ #(Jr + y JF5)} = &(p’“i.” - I)“‘\,w + #4’I), 
4fim’ 

(2.9) 

where PLvfiP is a shorthand for E lLv0.4V5npp. Similarly, subst,ituting U and Crs for 

r(i) gives 

U= -&t,r{$(Y+y5 y5)} = K$! = y 
1’5 p’ 

U5 = &tr{$y5(r+y5 ,Y5)} = F = --, 
111’ 

(2.10) 

Using equation (2.9) and (2.10), equation (2.8) takes t,he form: 

wreven 4~‘) = &tr { revenw + ? y/5) $} (2.11) 

or 

~(p)r,,,,,424 = &tr {revel, EI’(yI+y5 y/5)} (2.12) 

Equations (2.7) and (2.11) (or (2.12)) ale a I1 one needs to calculate the generic 

matrix element M of equation (2.1) in terms of the two four-vectors Vfl and I’~. 
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VP and Vsp depend on the four-vectors p and p’ and the helicities s and s’. Since 

we do not implicitly sum over fermion helicity, this summation has to be carried 

out explicitly. 

When the fermions are involved in chiral interactions such as electro-weak 

interactions, it is often more convenient t,o use a chiral basis for the Dirac space: 

PL R T”P‘ R 7”” {I+‘} = {- & - 
1 Jz’ fi ‘2fi ( 

(2.13) 

where PL = (1 - r5)/2 and PR = (1 + r5)/2. The corresponding four-yectors I.,: 

and VR are related to V and 145 via 

v, = $1~ -I/j), v, = +(I,~ + I./j), 

v = VL + VI7 v = l/L - VI? 

Jz’ 5 fi’ 

In terms of V, and V,, equations (2.7), (2.11) and (2.12) k&e the form 

~(P)rodd+? = $ijtr {r,dd( y,zp,+ ~LPL)} , 

qP)re”en4P’) = - Grn tr Ire,,,, (YRP,,+ YLPL) $}> 

qP)reven4P’) = &tr {Len 6(y/2x+ Y/‘P‘)} 

(2.14) 

(2.15) 

The entire derivation thus far did not depend on any particular representation 

of gamma matrices or spinors. In order to express the four-vectors 1;’ and 1’ (or 

V, and V,) in terms of the fermion momenta JJ a,nd II’, one needs to settle on a 

particular representation. For the specific cases of I/, 115 and VA, equation (2.3) 
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V” = &p, s)y’u(p’, A-‘), 

vs” = ;,qp, s)y’y5u(p’, s’), 

“y = $(p, Spy~PAU(pl’, s’). 

(2.16) 

coupled with a specific represemation, these equations form a prescription for cal- 

culating V, V5 and VA. Calculating 1’~ is particularly convenient if one chooses a 

chiral representation for the spinors. such as the one described in the a,ppendix. 

Finally, we would like to collect, several identities iuvolving the 1,“s which can 

be used in simplifying and verifying calculations. From equat,ion (2.9) one gets 

i@“yaK (;A),- (;+lL)“vc (;+-L)“vP 

From equations (2.10) follows: 

If. i-5 =o, 
( > 

v,. r,Lc =o 
( 1 111 171,’ 

When squaring an expression involving the V’s, one can make use of equation (2.2) 

to arrive at the following identities: 

c ylv: = P/lPL + PYPL - ((1, P’) - ?lbnl’)g,,, 

c Ifjv5: = p,,p; + p,p; - ((p p’) + ~?nm!)g~,~ 

$ iP~q:v; = 2(pPp’W - pypq. 



3. Example: e+e- + W+W- with Excited Fermions 

In this section we present one calculation carried out with the Vector Equiv- 

alence technique. We chose to calculate one helicity amplitude for the process 

e+e- + iIJ+W- in a model which extends the Standard Model by including an 

excited neutrino. The excited neutrino is massive, and couples to the IY and 

electron via a magnetic transition [7]. The relevant effective L,agrangian is: 

L,ff = ~C*d”‘(c - cly5)e~,,W~ + hc., (3.1) 

where A is the compositeness scale. While the electron mass can normally be 

neglected in high-energy collisions, we keep it finite to illustrate the treatment of 

massive external fermions. 

The matrix element for the process is given by 

M;T;: = EP’(P& A--)eV’(pqrXf)x 

(M;“_,+(4 + M:“,+(r) + M:fl,+(z) + M;“,+(H) + M:“,+b*)) , 
(3.2) 

where CT-, of, A- and A+ are the helicities of the electron, positron, II’- and I@ 

respectively, 



MZ,-(4 = fin+(m) (+P‘) i’“;f-/‘e) ($P~) u-(pl) 
e 

M%,-(Z) = %+(m)(k&o + sLPL))un-(pl) ( > seig12 (ir$,) 
Z (3.3) 

%-(Pl)s -27,12 (km7pv) 
Ii 

ME:,-(v*) = ~o+(p2)c7rr~~(~ - dy5) i(“;_d:,,: mu’) 
( 

x 
Y. > 

ufd$(c - cly5)u,-(pl)p~pf. 

Here f”*(~3,x-) and E”*(P~X+) are t,he polarization vectors of t,lle I+- and I,\J+ 

respectively, s = (pl + p2)2, t = (pl - p3)2, 

90 = 

and 

sin 0~” 
cos e1.v QL = - 

1 
2 sin ~91,~ cos 6)~ ’ (3.4) 

rrP 
V = !7v ((P3 - P4)rgf’” + 2p$7VT - 2p3”f’) , (3.5) 

with gr = e and gz = e cot &. 

In the e+e- center-of-mass frame, the momenta in the process take the follow- 
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ing values: 

Pl = go> 0, PC, 1) p3 = ~(Pwsins.O,c7wcos0.l) 

p2 = $(O,O, -o,, 1) p4 = $(-/3bvsin0,0, -DwcosQ,l), 
(3.6) 

where p, = dm s and ,gcv = ,/w. The W polarization vectors 

are: 

E*(p3,&) = -&cosO, &i, -sin@, 0) E*(p4,&) = ~(cose,~~.-sllle,O) 

E*(P3,0) = &(sin0,O,cosB,/3~) E*(P4,0) = 
w 

&(-sin0,0,-cosB,&). 
w 

(3.7) 

The vectors V”+b- and KO’u- are giveu in table 1. 

Table 1. The vectors Vim- and Iy+“- 

(CT+&-) vu+“- v5cT+c- 

(++I CO,& 0, -%/vq (0, o,o, -G?/&) 
(+-) (Pev5/2, --~Pe~/2,0,0) uLd5/2, -&b5/2,0,0) 

(-+I C-Ped5/2, -G%fi’/2,0,0) (--Ped5/2, -+efi/2,0,0) 

(--I (O,O, me/~‘, 0) (O,O, 0. -)ne/&) 

Applying eqns. (2.7) and (2.11) to equ. (3.3) gives (dropping the C+D- for 
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convinience): 

Mp”(y) = -i 
qt I)qtr {Y”~‘wl- rr,wYY+ Y5Y5,> 

e 
2 

= i dqtg- mZ) 
( - i@Ya,%)l - p3)mVq + (Pl - P3) V‘!Y 

- (Pl - P3Y1/LY - bl - P3)“qq 

M’“(r) zz -&;,,,\,j- 
s 

MP’“(Z) = -i;r;&- + fig‘b;) 
(3.8) 

M’“(X) = p2(p2 w’” 
4(s - 772;) 

Mj,“(y*) = -ie2P%f 
2lfqt - m;., 

((2 - d2)tr {dqyi,- $&““(Y’+ p*(5)} - 

ztr { (c2 + d2 - 2cdy5)cryp,~~(~+ yr5ys) Id?}) 

Equation (3.2) together with equations (3.5)-(3.8) allow a straight-forward, if 

lengthy, calculation of the various helicity amplitudes. 



4. Conclusion 

To summarize, we have developed a technique for calculating Feymnan am- 

plitudes involving (possibly massive) fermions. The technique uses two (complex) 

four-vectors V and V5 which depend on the fermion momenta and h&cities. Equa- 

tions (2.7) and (2.11) contain the prescription for expressing any Feynman ampli- 

tude as a trace involving these two four-vectors. 

In addition to the calculation of tree-level amplitudes with massless or massive 

fermions, the method can also be used in the calculation quantities arising in loop 

calculations provided the spinors can be taken to be in 4 dimensions. 

The Vector Equivalence technique easily lends itself to computerized evalua,tion 

of helicity amplitudes. The HIP package [4] implements t,he method symbolically. 

APPENDIX 

Expressing the four-vectors V and V5 in terms of the fermion momenta can 

only be done in the contest of a specific spinor representation. For complet,eness 

we provide a full description of one such representation. Our description closely 

follows that of reference 1. 

The gamma matrices are given by 

where ~2 = (1, rtu), and 

u = (0’,2, cT3) = 

2) ?=(gL y), (A.1) 

[(Y :)(u i)J: :1)], (A.21 

( 0 
y'L = 

of 
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The spinors u(p, A) and v(p, A) are given by 

tJ(p, X) = u(p* x)- 
(>- ~(P>X), ’ 

,U(P, A) = ( U(P, A,: U(P, e. ) 1 

v(p, X) = w(p> xL 

( ) 4P>X), ’ 
fi(P, A) = ( V(P? A,: ,U(P, x,t ). 

The explicit components of U* and U* are given by 

4P, A)% = 4P)XX(P).\4P~ A)* = fh(P)S-A(P): 

where w+(p) = dm and xi(p) are the helicity eigenstates 

C’P 
j-p(P) = h(P)> 

and are given by 

x+(p) = 
J2lPl!;p,+P,) (L2-3 =Tk( dEiY) 

X-(P) = 
J2,p,k4+li*~ (ra;::9 =Lq7ziFi@) 

For an arbitrary momentum pJ’ = (E, p) where 

p = (p,,p,,pz) = (sinBcos4lp[, sinOsin#lpl, cosBlpj) 

In the special case of 6’ = T (pz = -lpi) we use 

0 
X+(P) 

-1 
= 0 1 2 X-(P) = 

i ) 0 

(A.31 

(A.41 

(A.51 

(A.‘3 

(A.7) 

(‘4.8) 

The equations in this appendix, together with eqn. (2.16) can be used to cal- 

culation V, I+, and VA in terms of the fermion momenta and helicitics. The result 
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of the calculation is: 

v = ; (IPI IP’I POdI) -I’* P? 

v5 = ; (IpI lp’lpap;)-1’2 v5 

c = (-P-P’+P+P;)(PbPl +PoP;) 

%J = 4-P-P’_ + P+P;)(PbPl -POP:) 

R = (P-P’_ - P+P;)(PlP; - POP;) 

I 

(s = s’), 

G = (P-P!- + P+P;)(PiP; + POP&) 

PT = (P-P; + P+P’_ I( -PIP; + POP;) 

6 = -%P-P; + P+P’_)(Pd* + POP;) 

i;: = -(P-P\ + P+P’_)(PbPi + POP:) 

ti = C-P-P; + P+P’_)(PhJI - POP;) I 

(s = -s’), 

Q2 = (P-P’_ + P+P;)(PbP* + POP;) 

q = 4P-P’_ +P+P;)(P;PL -POP;) 

e = -(P-P’_ + P+P;xPlp; - POP;) 

G5 = -(P-d- - P+P;xPlP; + POP;) 1 

(s = s’), 

e = (P-P; - P+P’_)(P.LP: - POP;) 

q = -WP-P; + P+P’)(PlP; +popb) 

T = (P-P: - P+P’)(PbPl+ POP:) 

1 

(s = -s’), 

v = (P-P’+ + P+P’_)(PbPl - POP;) 

(A.% 

(A.10) 

(A.ll) 

(A.12) 

(A.13) 

where d’) is the helicity of p”) (-helicity for an anti-fermion), c”) is 1 (-1) for an 
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(anti) fermion, 

lp"'l = [pz(Jr2 + p,"'2 +p,"12] 1'2 ~ 

PO ('1 = lp"'l + p,"', 

P- I') = [E"' _ lp"'l] 112 ( 

p+“’ = #),$) [El” + lp”‘l] ‘1’ , 

Pl = Px - iSP,> and p; = p: -I- is’p;. 

(A.14) 

In the limit PO(‘), ~~1” + 0, oue should take pl(“/@ -+ m, 
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